Non-stabilizer quantum codes from Abelian subgroups of the error group
نویسندگان
چکیده
This paper is motivated by the computer-generated nonadditive code described in Rains et al [RHSN97]. We describe a theory of non-stabilizer codes of which the nonadditive code of Rains et al is an example. Furthermore, we give a general strategy of constructing good nonstabilizer codes from good stabilizer codes and give some explicit constructions and asymptotically good nonstabilizer codes. Like in the case of stabilizer codes, we can design fairly efficient encoding and decoding procedures.
منابع مشابه
Constacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملQuantum Error-Correction Codes on Abelian Groups
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
متن کاملNormalizer Circuits and Quantum Computation
In this thesis, we introduce new models of quantum computation to study the potential and limitations of quantum computer algorithms. Our models are based on algebraic extensions of the qubit Clifford gates (CNOT, Hadamard and π/4-phase gates) and Gottesman’s stabilizer formalism of quantum codes. We give two main kinds of technical contributions with applications in quantum algorithm design, c...
متن کاملBeyond Stabilizer Codes
Knill introduced a generalization of stabilizer codes, in this note called Clifford codes. It remained unclear whether or not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the abstract error group is given by an extraspecial p-group. Suppose that the abstract error group has an abelian index group, then we show that a Clifford...
متن کاملAn Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation
Quantum states are very delicate, so it is likely some sort of quantum error correction will be necessary to build reliable quantum computers. The theory of quantum error-correcting codes has some close ties to and some striking differences from the theory of classical error-correcting codes. Many quantum codes can be described in terms of the stabilizer of the codewords. The stabilizer is a fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quantum Information & Computation
دوره 4 شماره
صفحات -
تاریخ انتشار 2004